Balls and Boxes
题目链接
题目大意
现在有n个球丢进m个箱子里,给出了一个V: \[ V=\frac{\sum_{i=1}^m(X_i-\bar X)^2}{m} \] 现在要求这个V的期望。
题解
期望计算
\[ E[V]=E[\frac{\sum_{i=1}^m(X_i-\bar X)^2}{m}] \] \[ \therefore E[V]=(X_i-\bar X)^2 \] \[ \therefore E[V]=({X_i}^2-2X_i\bar X+{\bar X}^2) \] \[ \therefore E[V]=E[{X_i}^2]-{\bar X}^2 \] \[ \therefore E[V]=D[X_i]+E[X_i]^2-{\bar X}^2 \] 最终得到 \[ E[V]=D[X_i] \] 又因为\(X_i\) 其实就是一个二项分布,最后直接套公式就行了,得到最终结果: \[ E[V]=\frac{n(m-1)}{m^2} \]
代码
#include <iostream>
#include <cstring>
#include <cstdio>
#define LL long long
using namespace std;
LL n,m;
LL gcd(LL a,LL b)
{
if (b==0) return a;
return gcd(b,a%b);
}
int main()
{
while (scanf("%I64d%I64d",&n,&m),n!=0 || m!=0)
{
LL a,b,c;
if (m==1)
{
printf("0/1\n");
continue;
}
a=(m-1)*n; b=m*m;
c=gcd(a,b);
a/=c; b/=c;
printf("%I64d/%I64d\n",a,b);
}
return 0;
}